An Embedded Two-Layer Feature Selection Approach for Microarray Data Analysis
نویسندگان
چکیده
Feature selection is an important technique in dealing with application problems with large number of variables and limited training samples, such as image processing, combinatorial chemistry, and microarray analysis. Commonly employed feature selection strategies can be divided into filter and wrapper. In this study, we propose an embedded two-layer feature selection approach to combining the advantages of filter and wrapper algorithms while avoiding their drawbacks. The hybrid algorithm, called GAEF (Genetic Algorithm with embedded filter), divides the feature selection process into two stages. In the first stage, Genetic Algorithm (GA) is employed to pre-select features while in the second stage a filter selector is used to further identify a small feature subset for accurate sample classification. Three benchmark microarray datasets are used to evaluate the proposed algorithm. The experimental results suggest that this embedded two-layer feature selection strategy is able to improve the stability of the selection results as well as the sample classification accuracy.
منابع مشابه
Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملIntegration and Reduction of Microarray Gene Expressions Using an Information Theory Approach
The DNA microarray is an important technique that allows researchers to analyze many gene expression data in parallel. Although the data can be more significant if they come out of separate experiments, one of the most challenging phases in the microarray context is the integration of separate expression level datasets that have gathered through different techniques. In this paper, we prese...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملDeveloping a Filter-Wrapper Feature Selection Method and its Application in Dimension Reduction of Gen Expression
Nowadays, increasing the volume of data and the number of attributes in the dataset has reduced the accuracy of the learning algorithm and the computational complexity. A dimensionality reduction method is a feature selection method, which is done through filtering and wrapping. The wrapper methods are more accurate than filter ones but perform faster and have a less computational burden. With ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Intelligent Informatics Bulletin
دوره 10 شماره
صفحات -
تاریخ انتشار 2009